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In the paper a problem of guillotine cutting a cuboid (cuboid means here always a rectangular
box) into two cuboids is considered. The small cuboids can not be rotated. The question is whether
there exists a cutting pattern with given numbers of occurrences of both cuboids. A polynomial
time algorithm for constructing the convex hull of the set of feasible solutions to this problem is
suggested.
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Introduction. The problems of rectangular packing and cutting are di�cult problems

of discrete optimization [1]. For example, it is unknown the computational complexity of a

problem of packing in a rectangular sheet (A,B) the maximum number of equal small rectangles

(c, d), (d, c) (pallet loading problem (PLP)). The Open Problems Project [2] Problem 55: Pallet

Loading Statement What is the complexity of the pallet loading problem? Given twopairs of

numbers, (A, B) and (a, b), and a number n, decide whether n small rectangles of size a? B, in

either axis-parallel orientation, can bepacked into a large rectangle of size A? B. This problem

is not even known to be in NP, because of the compact input description, and the possibly

complicated structure of a packing.

For a problem of optimum guillotine cutting a rectangle (A,B) into rectangles (c, d), (d, c)

fast polynomial algorithms are known [3, 4]. In [5, 6] a problem of guillotine cutting a rectangular

sheet (A,B) into rectangles (a, b), (c, d) with the minimal trim loss is considered and polynomial

algorithms are suggested when the number of occurrences of small rectangles in a cutting

pattern is not restricted. Adding the constraint on the number of occurrences of rectangles

(a, b), (c, d) complicates the problem. It is not known, whether belongs to P (the class of the

problems which are solvable in the polynomial running time) the problem about an existence

of guillotine cutting a rectangular sheet (A,B) into m rectangles (a, b) and n rectangles (c, d).

In this paper a polynomial time algorithm is designed for weakened variant of a problem in

a three-dimensional case of guillotine cutting a cuboid into two smaller cuboids. This paper

generalizes [5] for a 3D-case. Methods in [5] can not be applied directly to 3D-case.
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In the second section, properties of a knapsack polygon (the convex hull of the set of feasible

solutions of a 2-dimensional knapsack problem) are considered. In the third section, one general

theorem about the reduction of parameters in a general problem of rectangular cutting is stated.

In Section 4, a problem of guillotine cutting a cuboid into two smaller cuboids without rotations,

parallel to the sides of a big cuboid, is considered. A geometrical theorem about the structure

of the set of solutions of considered problem is proved. From this theorem follows a polynomial

algorithm of constructing the convex hull of this set. In Section 5, a numerical example is

considered. In Section 6, we discuss generalizations of the results for n-dimensional case.

1. Some properties of a knapsack polygon. The set of feasible solutions of a knapsack

problem plays an important role for problems of guillotine cutting. In a 2-dimensional case,

this set is presented as:

SA = {(x, y) ∈ Z2
+|ax+ by 6 A},

where a, b, A ∈ Z+ = {0, 1, 2, ...}. The convex hull of this set refers to as a knapsack polygon
denoted by

PA = co{(x, y) ∈ Z2
+|ax+ by 6 A},

where co denote the convex hull operation.

Let's show, that a knapsack polygon PA can be presented as

PA =
m⊕
i=1

T (xi, yi), (1)

where T (xi, yi) is a right triangle with vertices (0, 0), (0, yi), (xi, 0), m+1 is a number of nonzero

vertices of PA, the symbol ⊕ denotes an algebraic sum (the Minkowski sum) of sets:

S1 ⊕ S2 = {z|z = x+ y, x ∈ S1, y ∈ S2}.

If

⌊
A

a

⌋
= 0, then it is easy to see, that

PA = T

(
0,

⌊
A

b

⌋)

is a singular triangle � an interval, connecting points (0, 0), (0,

⌊
A

b

⌋
). Similarly, if

⌊
A

b

⌋
= 0,

then

PA = T

(⌊
A

a

⌋
, 0

)
.
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Let's consider the case

⌊
A

a

⌋
> 0,

⌊
A

b

⌋
> 0. Let nonzero vertices of PA are sorted by

increasing x-coordinates. Then the �rst vertex is (X0, Y0) =

(
0,

⌊
A

b

⌋)
. Let (X1, Y1) be the

second nonzero vertex of PA. Then

PA = T

(
X1,

⌊
A

b

⌋
− Y1

)
⊕ P ′A,

where P ′A is de�ned as:

P ′A = co{(x, y) ∈ Z2
+|ax+ by 6 A− aX1},

and all nonzero vertices of P ′A are translation of vertices of PA, excepting the �rst, by (−X1, 0).

Applying an induction, we obtain required representation.

It is easy to establish the following recurrent equations, connecting coordinates of vertices

and parameters of right triangles in the above representation:

(X0, Y0) =

(
0,

⌊
A

b

⌋)
,

(Xi, Yi) =

(
i∑

j=1

xj,

⌊
A

b

⌋
−

i∑
j=1

yj

)
,

(Xm, Ym) =

(⌊
A

a

⌋
, 0

)
.

Note the following properties of this representation:

m∑
i=1

xi =

⌊
A

a

⌋
,

m∑
i=1

yi =

⌊
A

b

⌋
.

If triangles are sorted by increasing
yi
xi

order, then only one triangle can be singular: the

�rst T1, if ax1 < b, then y1 = 0, and the last Tm, if bym < a, then xm = 0. If in (1), where

right triangles T (xi, yi) are sorted by increasing
yi
xi

order, there are no singular triangles, then

it is possible to add singular the �rst and last triangles T0(0, 0), Tm+1(0, 0). Thus, from the

beginning we may assume, that T1, Tm are singular triangles T1(x1, 0), Tm(0, ym).

Among other properties note the following property. If gcd(xi, yi) > 1, then
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Ti(xi, yi) =

gcd(xi,yi)⊕
j=1

Ti

(
xi

gcd(xi, yi)
,

yi
gcd(xi, yi)

)
.

The similar possibility of further decomposition appears in the case, when boundary of a

knapsack polygon besides vertices contains also other points of an integer lattice Z2
+.

Consider an example from [5] of a knapsack polygon:

PA = co({(x, y)|49x+ 80y ≤ 632, x, y ∈ Z+}).

It has 6 non zero vertices (0,7),(1,7),(3,6),(8,3),(11,1),(12,0) and can be presented by the

Minkowski sum of right triangles:

PA = T1(1, 0)⊕ T2(2, 1)⊕ T3(5, 3)⊕ T4(3, 2)⊕ T5(1, 1),

where T1(1, 0) is a singular triangle.

Remark. If we denote by T I(α, β) the set of integer points in T (α, β):

T I(α, β) = {(x, y) ∈ Z2
+|(x, y) ∈ T (α, β)}

then we have the next formula for the set of feasible solutions in a 2-dimensional knapsack

problem:

SA =
m⊕
i=1

T I(xi, yi), (2)

where PA =
⊕m

i=1 T (xi, yi).

A knapsack polygon is characterized by a triplet of integer positive numbers (a, b, A).

De�nition 1. A triplet (a, b, A), describing a knapsack polygon, is equivalent to a triplet

(a′, b′, A′) ((a, b, A) ∼ (a′, b′, A′)) if the sets of feasible solutions of corresponding knapsack

problems are equal:

ax+ by 6 A⇔ a′x+ b′y 6 A′, x, y ∈ Z+.

We say that a triplet (a, b, A) can be decreased, if there exists an equivalent triplet

(a′, b′, A′) ∼ (a, b, A), a′ 6 a, b′ 6 b, A′ 6 A, and (a′, b′, A′) 6= (a, b, A).

Neighboring Farey fractions of
a

b
[7]:

a2
b2
<
a

b
<
a1
b1
, a1 + a2 = a, b1 + b2 = b, ab2 − ba2 = a1b− ab1 = 1.

play an important role for a possibility of decreasing a triplet (a, b, A), gcd(a, b) = 1.

It is easy to show, that if A is replaced by the optimum value of a knapsack problem:
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A∗ = max{ax+ by|ax+ by 6 A, x, y ∈ Z+}

then (a, b, A) ∼ (a, b, A∗). If in addition, A > A∗, then the triplet (a, b, A) can be decreased.

Thus, we can assume that A = ra + sb, r, s ∈ Z+, gcd(a, b) = 1. If r > b or s > a, then

the triplet (a, b, A) can not be decreased. Let's show, that the triplet (a, b, ab + ra + sb), a >

0, b > 0, gcd(a, b) = 1 can not be decreased. Suppose on the contrary that there exists a triplet

(a′, b′, A′), a′ + b′ < a+ b:

a′x+ b′y 6 A′ ⇔ (3)

⇔ ax+ by 6 ab+ ra+ sb, x, y ∈ Z+. (4)

Because points (r + b, s), (r, a + s) ∈ S = {(x, y) ∈ Z2
+|ax + by 6 ab + ra + sb}, they also

belong to S ′ = {(x, y) ∈ Z2
+|a′x+ b′y 6 A′}. From here follows, that

a′(r + b) + b′s 6 A′, a′r + b′(a+ s) 6 A′.

Let's consider two cases: a)
a

b
<
a′

b′
, b)

a

b
>
a′

b′
.

a) Let
a

b
<
a′

b′
. By virtue of properties of Farey series

a

b
<
a1
b1

6
a′

b′
, a1b− ab1 = 1, b′a1 − a′b1 6 0.

Consider a point (r + b− b1, s+ a1). It satis�es (3), because

a′(r + b− b1) + b′(s+ a1) = a′(r + b) + b′s+ (b′a1 − a′b1) 6 A′.

At the same time, this point does not satisfy (4):

a(r + b− b1) + b(s+ a1) = ab+ ra+ sb+ (ba1 − ab1) = ab+ ra+ sb+ 1.

That is, triplets (a, b, ab+ ra+ sb), (a′, b′, A′) are not equivalent.

b) Similarly, if
a

b
>
a′

b′
, then by the properties of Farey series

a′

b′
6
a2
b2

6
a

b
, ab2 − a2b = 1, a′b2 − a2b′ 6 0.

Consider a point (r + b2, s+ a− a2). It satis�es (3), because

a′(r + b2) + b′(s+ a− a2) = a′r + b′(a+ s) + (a′b2 − a2b′) 6 A′.

On the other hand, it does not satisfy (4):
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a(r + b2) + b(s+ a− a2) = ab+ ra+ sb+ (ab2 − a2b) = ab+ ra+ sb+ 1.

That is, in this case triplets (a, b, ab+ ra+ sb), (a′, b′, A′) are not equivalent too.

Thus, a question about decreasing a triplet (a, b, ra+ sb) is interesting only if r < b, s < a.

Lemma 1. Let be given a knapsack problem, the set of feasible solutions of which is given

by an inequality

ax+ by 6 A = ra+ sb, x, y, r, s ∈ Z+, r < b, s < a.

The triplet (a, b, A) can not be decreased if and only if r > b1, s > a2.

Proof.We prove this lemma by contradiction. Let, for example, r < b1. We shall show, that

the triplet (a, b, A) can be decreased. Let's show, that the following inequalities

ax+ by 6 ra+ sb (5)

a1x+ b1y 6 ra1 + sb1 (6)

describing the sets S = {(x, y) ∈ Z2
+|ax + by 6 ra + sb} and S1 = {(x, y) ∈ Z2

+|a1x + b1y 6

ra1 + sb1} are equivalent.
1. Let (x, y) ∈ S. Let's show, that (x, y) ∈ S1. Inequality (5) is equivalent to a(x − r) 6

b(s− y). Consider three cases: a) x = r, b) x > r, c) x < r.

a) If x = r, then y 6 s and (x, y) ∈ S1.

b) If x > r, then
a

b
≤ s− y
x− r

. Because s < a, then x − r < b. By the properties of Farey

series, in interval

(
a

b
,
a1
b1

)
there are no numbers with denominator smaller than b, therefore

a1
b1
≤ s− y
x− r

, i. e., (x, y) ∈ S1.

c) Let x < r. Then
a

b
>
y − s
r − x

. Especially,
a1
b1

>
y − s
r − x

. That is (x, y) ∈ S1.

2. Let (x, y) ∈ S1. We shall show, that (x, y) ∈ S. Inequality (6) can be rewritten as

a1(x− r) 6 b1(s− y). Consider three cases: a) x = r, b) x > r, c) x < r.

a) If x = r, then y 6 s. From here follows, that (x, y) ∈ S.
b) Let x > r. Then

a1
b1

6
s− y
x− r

. Especially,
a

b
6
s− y
x− r

, i. e., (x, y) ∈ S.

c) Let x < r. Then
a1
b1

>
y − s
r − x

and r − x < b1. Because an interval

(
a

b
,
a1
b1

)
does not

contain rational numbers with a denominator smaller than b1,
a

b
>
y − s
r − x

, i. e., (x, y) ∈ S.
The equivalence of Inequalities (5) and (6) shows a possibility of decreasing the parameters

of Inequality (5) if r < b1.

A possibility of decreasing the parameters of Inequality (5) if s < a2 can be shown similarly.
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Let r > b1, s > a2. We shall show, that it is impossible to decrease parameters. Let, on

the contrary, the triplet (a, b, ra+ sb) can be decreased. Then there is a triplet (a′, b′, A′), a′ 6

a, b′ 6 b, A′ 6 A, a′ + b′ + A′ < a+ b+ A such that

ax+ by 6 ra+ sb⇔ (7)

⇔ a′x+ b′y 6 A′, x, y ∈ Z+. (8)

First of all, ra′ + sb′ 6 A′, as (r, s) is a solution of (7), (8). Consider two possible cases: a)
a

b
<
a′

b′
, b)

a

b
>
a′

b′
.

a) Let
a

b
<
a′

b′
. By the property of numbers of Farey series

a

b
<
a1
b1

6
a′

b′
.

But the point (r − b1, s+ a1) does not satisfy (7) because

a(r − b1) + b(a1 + s) = ar + bs+ ba1 − ab1 = ar + bs+ 1

and satis�es (8) because b′a1 − a′b1 6 0 and

a′(r − b1) + b′(a1 + s) = a′r + b′s+ b′a1 − a′b1 6 A′.

That is, in this case decreasing of parameters is impossible.

b) Let
a

b
>
a′

b′
. By the property of numbers of Farey series

a′

b′
6
a2
b2

6
a

b

and a′b2 − b′a2 6 0, ab2 − ba2 = 1. Take a point x = b2 + r, y = s− a2. Then (8) is carried out:

a′(b2 + r) + b′(s− a2) = a′r + b′s+ a′b2 − b′a2.

At the same time, (7) is not carried out because

a(b2 + r) + b(s− a2) = ar + bs+ ab2 − ba2 = ar + bs+ 1.

The lemma is proved.

2. Theorem about equivalence of guillotine cutting problems. We shall distinguish

formulations of problems of guillotine cutting (or packing) in a boolean and in integer variant.

By
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((A,B,C); (a1, b1, c1), (a2, b2, c2), ..., (an, bn, cn)) (9)

let's denote a boolean variant of a problem of packing in a cuboid (A,B,C) cuboids

(a1, b1, c1), (a2, b2, c2)..., (an, bn, cn), and by

((A,B,C); z1(a1, b1, c1), z2(a2, b2, c2), ..., zn(an, bn, cn)) (10)

an integer variant of a problem of packing in a cuboid (A,B,C) z1 cuboids (a1, b1, c1), z2

cuboids (a2, b2, c2)..., zn cuboids (an, bn, cn). For convenience of exposition we may assume that

orientations of cuboids are �xed . For integer variant of a problem we call (analogously to

Integer Linear Programming) the set of integer vectors (z1, z2..., zn), such that there exists a

solution of an integer cutting problem (10), the set of feasible solutions. This set of feasible

solutions we shall denote by

A,B,C

a1, b1, c1, a2, b2, c2..., an, bn, cn.
(11)

Let's state the main theorem of this section.

Theorem 1. Let boolean packing problems are given

((A,B,C); (a1, b1, c1), (a2, b2, c2), ..., (an, bn, cn)), (12)

((A′, B′, C ′); (a′1, b
′
1, c
′
1), (a

′
2, b
′
2, c
′
2), ..., (a

′
n, b
′
n, c
′
n)). (13)

Let the sets of feasible solutions in boolean variables xi, yi, zi ∈ {0, 1}, i = 1, 2, ..., n coincide

for all three pairs of inequalities:

n∑
i=1

aixi ≤ A ⇐⇒
n∑

i=1

a′ixi ≤ A′, (14)

n∑
i=1

biyi ≤ B ⇐⇒
n∑

i=1

b′iyi ≤ B′, (15)

n∑
i=1

cizi ≤ C ⇐⇒
n∑

i=1

c′izi ≤ C ′. (16)

Then the problem (12) is equivalent to the problem (13), i. e. (12) is solvable if and only if

(13) is solvable.

Proof. The proof of this theorem is standard. Let there exists a packing pattern for (12). A

packing pattern is described by the coordinates of deep bottom left vertices of all parallelepipeds

(xi, yi, zi), i = 1, 2, ..., n, which satisfy the conditions of non-overlapping of small parallelepipeds
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and their belonging to the parallelepiped (A,B,C), whose the deep bottom left vertex is in

(0, 0, 0). By a method of normalization of packing it is possible to show, that there exists packing

with coordinates of an arrangement of i-th parallelepiped, i = 1, 2, ..., n:

xi =
n∑

k=1

αk
i ak, where α

k
i ∈ {0, 1}, αi

i = 0,

yi =
n∑

k=1

βk
i bk, where β

k
i ∈ {0, 1}, βi

i = 0,

zi =
n∑

k=1

γki ck, where γ
k
i ∈ {0, 1}, γii = 0.

Let's correspond to this packing pattern the next packing pattern for (13):

x′i = max

{
n∑

k=1

δki a
′
k|

n∑
k=1

δki ak ≤ xi, δ
k
i ∈ {0, 1}, δii = 0

}
, (17)

y′i = max

{
n∑

k=1

δki b
′
k|

n∑
k=1

δki bk ≤ yi, δ
k
i ∈ {0, 1}, δii = 0

}
, (18)

z′i = max

{
n∑

k=1

δki b
′
k|

n∑
k=1

δki bk ≤ yi, δ
k
i ∈ {0, 1}, δii = 0

}
. (19)

Let's show, that this packing pattern is feasible. We must check the constraints of

non-overlapping of small parallelepipeds and the constraints of their belonging to a big

parallelepiped. In particular, it is necessary to show, that x′i+a
′
i ≤ A′. Because x′i =

∑n
k=1 δ

k
i a
′
k

for some boolean vector δi = (δ1i , δ
2
i , ..., δ

n
i ), δ

i
i = 0, then x′i + a′i =

∑n
k=1 δ̃

k
i a
′
k, where δ̃

k
i = δki , if

i 6= k and δ̃ii = 1. From (17) it follows that

n∑
k=1

δki ak ≤ xi,

and

n∑
k=1

δ̃ki ak ≤ xi + ai ≤ A.

Thus, a vector δ̃i belongs to the set of feasible solutions of (14), i. e.,
∑n

k=1 δ̃
k
i a
′
k ≤ A′. The

ful�llment of y′i + b′i ≤ B′, z′i + c′i 6 C ′ can be shown analogously.

Let now i-th and j-th parallelepipeds are not overlapped. For example, let xi ≥ xj + aj. Let

x′j =
∑n

k=1 δ
k
j a
′
k, where
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n∑
k=1

δkj ak ≤ xj, δ
k
j ∈ {0, 1}, δ

j
j = 0.

Because i-th parallelepiped locates from the left of j-th then δij = 0 and

xi ≥
n∑

k=1

δkj ak + aj.

From (17)

x′i ≥
n∑

k=1

δkj a
′
k + a′j = x′j + a′j.

That is, the constraints of non-overlapping of parallelepipeds in the second packing problem

is carried out. We prove that for every packing pattern in the �rst packing problem there exists

a packing pattern de�ned by (17)�(18) for the second problem. By the symmetry, for every

packing pattern in the second packing problem there exists a packing pattern for the �rst

problem. The theorem is proved.

From this theorem the next corollary for an integer packing problem easily follows.

Corollary 1. Let integer packing problems are given

((A,B,C); z1(a1, b1, c1), z2(a2, b2, c2), ..., zn(an, bn, cn)), (20)

((A′, B′, C ′); z1(a
′
1, b
′
1, c
′
1), z2(a

′
2, b
′
2, c
′
2), ..., zn(a

′
n, b
′
n, c
′
n)). (21)

Let the sets of feasible solutions in integer non-negative variables xi, yi, zi ∈ {0, 1, 2...}, i =

1, 2, ..., n coincide for all three pairs of inequalities:

n∑
i=1

aixi ≤ A ⇐⇒
n∑

i=1

a′ixi ≤ A′, (22)

n∑
i=1

biyi ≤ B ⇐⇒
n∑

i=1

b′iyi ≤ B′, (23)

n∑
i=1

cizi ≤ C ⇐⇒
n∑

i=1

c′izi ≤ C ′. (24)

Then the problem (20) is equivalent to the problem (21), particularly

A,B,C

a1, b1, c1, a2, b2, c2..., an, bn, cn
=

A′, B′, C ′

a′1, b
′
1, c
′
1a
′
2, b
′
2, c
′
2..., a

′
n, b
′
n, c
′
n

.
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For the proof of this corollary it is enough to present integer packing problems (20), (21) as

boolean with z1 + z2 + ...+ zn boolean variables according to the number of small cuboids.

3. Guillotine cutting a cuboid into two cuboids without rotations. The existence

of polynomial time algorithms for optimum guillotine cutting a rectangular sheet into equal

rectangular pieces and its connection with Integer Linear Programming allows to suppose the

existence of a polynomial algorithm for the problem of integer guillotine cutting a rectangular

sheet into a �xed number of rectangular pieces. In [3] it is presented a linear in the number

of arithmetic operations algorithm of optimum guillotine cutting a rectangular sheet (A,B)

into two rectangles (a, b), (c, d). In this section we consider a problem of constructing the set

of feasible solutions of guillotine cutting a cuboid (A,B,C) into cuboids (a, b, c), (d, e, f) and a

problem of constructing the convex hull of the set of feasible solutions. Without loss of generality,

we may assume that all parameters A,B,C, a, b, c, d, e, f ∈ Z+ are non-negative integers. A basis

for consideration of these problems is the theorem which generalizes the theorem from [4]. We

shall designate

A,B,C

a, b, c, d, e, f
= {(x, y)| cutting pattern exists for ((A,B,C);x(a, b, c), y(d, e, f))}

It is easy to check the following properties of a symbol
A,B,C

a, b, c, d, e, f
:

(x, y) ∈ A,B,C

a, b, c, d, e, f
⇔ (y, x) ∈ A,B,C

d, e, f, a, b, c
(25)

(x1, y1) 6 (x2, y2), (x2, y2) ∈
A,B,C

a, b, c, d, e, f
⇒ (x1, y1) ∈

A,B,C

a, b, c, d, e, f
(26)

(x1, y1) ∈
A1, B, C

a, b, c, d, e, f
, (x2, y2) ∈

A2, B, C

a, b, c, d, e, f
⇒

⇒ (x1 + x2, y1 + y2) ∈
A1 + A2, B, C

a, b, c, d, e, f
(27)

(a, b, c, d, e, f) 6 (a′, b′, c′, d′, e′, f ′)⇒

⇒ A,B,C

a, b, c, d, e, f
⊇ A,B,C

a′, b′, c′, d′, e′, f ′
(28)

(A,B,C) 6 (A′, B′, C ′)⇒ A,B,C

a, b, c, d, e, f
⊆ A′, B′, C ′

a, b, c, d, e, f
(29)

A1 + A2, B, C

a, b, c, d, e, f
⊇ A1, B, C

a, b, c, d, e, f
⊕ A2, B, C

a, b, c, d, e, f
(30)

∀λ > 0
A,B,C

a, b, c, d, e, f
=

λA, λB, λC

λa, λb, λc, λd, λe, λf
(31)

if a, b, c, d, e, f are natural numbers, then
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A,B,C

a, b, c, d, e, f
=
bAc, bBc, bCc
a, b, c, d, e, f

(32)

Among properties of the Minkowski sum [8] note the following property:

co(S1 ⊕ S2) = co(S1)⊕ co(S2).

It is easy to show, that if A is not an integer linear combination of a, d, then it is possible to

decrease A to the number, representable by such a combination. For this purpose it is enough

to solve integer linear programming problem with two variables (knapsack problem):

az1 + dz2 → max, (33)

az1 + dz2 6 A, z1, z2 ∈ Z+.

If A∗ is an optimum value of this problem, then

A,B,C

a, b, c, d, e, f
=

A∗, B, C

a, b, c, d, e, f
.

Therefore, from the outset we assume, that A,B,C are integer linear combinations of

corresponding sides of small cuboids:

A = r1a+ s1d,B = r2b+ s2e, C = r3c+ s3f.

Let's prove the main theorem of this section.

Theorem 2. Let A = ra+ sd, r, s ∈ Z+. Then

A,B,C

a, b, c, d, e, f
=
ra+ sd,B,C

a, b, c, d, e, f
=

ra,B,C

a, b, c, d, e, f
⊕ sd,B,C

a, b, c, d, e, f
. (34)

Proof. The relation

ra+ sd,B,C

a, b, c, d, e, f
⊇ ra,B,C

a, b, c, d, e, f
⊕ sd,B,C

a, b, c, d, e, f

follows from (30). It is necessary to show, that

ra+ sd,B,C

a, b, c, d, e, f
⊆ ra,B,C

a, b, c, d, e, f
⊕ sd,B,C

a, b, c, d, e, f
.

We prove this relation by contradiction. Let (A,B,C) be a cuboid with a minimal volume,

for which this theorem is not valid, i. e.,

(m,n) ∈ ra+ sd,B,C

a, b, c, d, e, f
,
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but

(m,n) 6∈ ra,B,C

a, b, c, d, e, f
⊕ sd,B,C

a, b, c, d, e, f
.

Let for receiving m cuboids (a, b, c) and n cuboids (d, e, f), the �rst cut divides the side B,

i. e., for the some B1, B2 : B = B1 +B2

(m,n) ∈ A,B1, C

a, b, c, d, e, f
⊕ A,B2, C

a, b, c, d, e, f
,m = m1 +m2, n = n1 + n2,

(m1, n1) ∈
A,B1, C

a, b, c, d, e, f
, (m2, n2) ∈

A,B2, C

a, b, c, d, e, f
.

For cuboids (A,B1, C), (A,B2, C) the theorem is valid:

(m1, n1) ∈
ra,B1, C

a, b, c, d, e, f
⊕ sd,B1, C

a, b, c, d, e, f

(m2, n2) ∈
ra,B2, C

a, b, c, d, e, f
⊕ sd,B2, C

a, b, c, d, e, f
.

Thus,

(m,n) ∈ ra,B1, C

a, b, c, d, e, f
⊕ sd,B1, C

a, b, c, d, e, f
⊕ ra,B2, C

a, b, c, d, e, f
⊕ sd,B2, C

a, b, c, d, e, f
.

By the property (30) applied to the side B:

(m,n) ∈ ra,B,C

a, b, c, d, e, f
⊕ sd,B,C

a, b, c, d, e, f
.

This contradiction shows, that the �rst cut cannot divide the side B. Similarly, the �rst

cut cannot divide the side C = C1 + C2. Hence, the �rst cut divides the side A = A1 + A2.

Following to (33) we replace A1, A2 accordingly by r1a + s1d, r2a + s2d. If min(r1, s1) > 0 or

min(r2, s2) > 0, then the contradiction can be obtained because for (A1, B, C), (A2, B, C) the

theorem is valid. Let, for example, min(r1, s1) > 0. Then either r > r1, or s > s1. If r > r1,

then for receiving (m,n) we have cutting

(m,n) ∈ r1a,B,C

a, b, c, d, e, f
⊕ s1d,B,C

a, b, c, d, e, f
⊕ A2, B, C

a, b, c, d, e, f
⊆

⊆ r1a,B,C

a, b, c, d, e, f
⊕ s1d+ A2, B, C

a, b, c, d, e, f
.

That is,
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(m,n) ∈ r1a,B,C

a, b, c, d, e, f
⊕ s1d+ (r − r1)a,B,C

a, b, c, d, e, f
.

For the second summand the theorem is valid:

(m,n) ∈ r1a,B,C

a, b, c, d, e, f
⊕ (r − r1)a,B,C

a, b, c, d, e, f
⊕ sd,B,C

a, b, c, d, e, f
.

Then, by the property (30):

(m,n) ∈ ra,B,C

a, b, c, d, e, f
⊕ sd,B,C

a, b, c, d, e, f
.

The contradiction compels conditions:

min(r1, s1) = min(r2, s2) = 0.

Besides, if r1 = 0, s1 > 0, s2 = 0, r2 > 0 or r1 > 0, s1 = 0, s2 > 0, r2 = 0, then it is easy to

obtain the contradiction again. In fact, let

(m,n) ∈ r2a,B,C

a, b, c, d, e, f
⊕ s1d,B,C

a, b, c, d, e, f
.

In addition, r2a+ s1d 6 ra+ sd, so r2 6 r or s1 6 s. Let s1 6 s. Then,

(m,n) ∈ A− s1d,B,C
a, b, c, d, e, f

⊕ s1d,B,C

a, b, c, d, e, f
=

=
ra+ (s− s1)d,B,C

a, b, c, d, e, f
⊕ s1d,B,C

a, b, c, d, e, f
.

For the �rst summand the theorem is valid, i. e.,

(m,n) ∈ ra,B,C

a, b, c, d, e, f
⊕ (s− s1)d,B,C

a, b, c, d, e, f
⊕ s1d,B,C

a, b, c, d, e, f
⊆

⊆ ra,B,C

a, b, c, d, e, f
⊕ sd,B,C

a, b, c, d, e, f
.

It remains to consider the case

min(r1 + r2, s1 + s2) = 0.

Let, for example, r1 + r2 = 0. Then

(m,n) ∈ s1d,B,C

a, b, c, d, e, f
⊕ s2d,B,C

a, b, c, d, e, f
.
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By Lemma 1 and Theorem 1 the following circumstances are valid. Let A = Mad + ra +

sd, r < d, s < a. If M > 0, then A = ra + (s +Ma)d and min(s1, s2) < (s +Ma) because

ra < (s+Ma)d and it is easy to obtain the contradiction again. Let, for example, s1 < (s+Ma).

Then

(m,n) ∈ s1d,B,C

a, b, c, d, e, f
⊕ ra+ (s+Ma− s1)d,B,C

a, b, c, d, e, f
.

For the second summand the theorem is valid, therefore

(m,n) ∈ s1d,B,C

a, b, c, d, e, f
⊕ ra,B,C

a, b, c, d, e, f
⊕ (s+Ma− s1)d,B,C

a, b, c, d, e, f
⊆

⊆ ra,B,C

a, b, c, d, e, f
⊕ (s+Ma)d,B,C

a, b, c, d, e, f
.

Thus,M = 0, A = ra+sd, r < d, s < a. If it was possible to decrease the triplet (a, d, ra+sd)

to the triplet (a′, d′, A′ = ra′ + sd′), then by Theorem 1:

A,B,C

a, b, c, d, e, f
=

A′, B, C

a′, b, c, d′, e, f
.

For the right part of this equality the theorem is valid:

A′, B, C

a′, b, c, d′, e, f
=

ra′, B, C

a′, b, c, d′, e, f
⊕ sd′, B, C

a′, b, c, d′, e, f

and again by Theorem 1:

ra′, B, C

a′, b, c, d′, e, f
=

ra,B,C

a, b, c, d, e, f
,

sd′, B, C

a′, b, c, d′, e, f
=

sd,B,C

a, b, c, d, e, f
.

Thus,

A,B,C

a, b, c, d, e, f
=

ra,B,C

a, b, c, d, e, f
⊕ sd,B,C

a, b, c, d, e, f
.

From this contradiction it follows, that the triplet (a, d, ra+sd) can not be decreased. Then,

from Lemma 1, r > d1, s > a2, where

a2
d2

<
a

d
<
a1
d1

are three consecutive members of Farey series Fb. That is

(m,n) ∈ s1d,B,C

a, b, c, d, e, f
⊕ s2d,B,C

a, b, c, d, e, f
,

but
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(m,n) 6∈ ra,B,C

a, b, c, d, e, f
⊕ sd,B,C

a, b, c, d, e, f
,

ra+ sd > s1d+ s2d, thus equality cannot be valid because gcd(a, d) = 1, i. e., ra+ sd− 1 >

s1d+ s2d. Thus,

(m,n) ∈ ra+ sd− 1, B, C

a, b, c, d, e, f
.

If a1 > a2 (and, therefore, d1 > d2), then by presenting ra + sd − 1 = (r − d2)a + (s +

a2)d, r − d2 > 0, we obtain

(m,n) ∈ ra+ sd− 1, B, C

a, b, c, d, e, f
=

(r − d2)a+ (s+ a2)d,B,C

a, b, c, d, e, f
.

Here the theorem is already valid, i. e.,

(m,n) ∈ (r − d2)a,B,C
a, b, c, d, e, f

⊕ (s+ a2)d,B,C

a, b, c, d, e, f
.

Especially,

(m,n) ∈ (r − d2)a,B,C
a, b, c, d, e, f

⊕ d2a+ sd,B,C

a, b, c, d, e, f
.

The theorem is already valid for the second summand, i. e.,

(m,n) ∈ (r − d2)a,B,C
a, b, c, d, e, f

⊕ d2a,B,C

a, b, c, d, e, f
⊕ sd,B,C

a, b, c, d, e, f
⊆

⊆ ra,B,C

a, b, c, d, e, f
⊕ sd,B,C

a, b, c, d, e, f
.

Similarly, the contradiction can be obtained for the case a2 > a1, d2 > d1. In this case, take

the representation ra+ sd− 1 = (r+ d1)a+ (s− a1)d, s− a1 > 0. Then, the theorem is already

valid:

(m,n) ∈ (r + d1)a,B,C

a, b, c, d, e, f
⊕ (s− a1)d,B,C

a, b, c, d, e, f
⊆

⊆ (s− a1)d,B,C
a, b, c, d, e, f

⊕ (r + d1)d+ 1, B, C

a, b, c, d, e, f
⊆

⊆ (s− a1)d,B,C
a, b, c, d, e, f

⊕ a1d,B,C

a, b, c, d, e, f
⊕ ra,B,C

a, b, c, d, e, f
⊆
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⊆ ra,B,C

a, b, c, d, e, f
⊕ sd,B,C

a, b, c, d, e, f
.

The contradiction �nally proves the theorem.

This theorem together with Theorem 1 allows to show, that every cutting into two cuboids

can be decomposed into so-called elementary cuttings.

De�nition 2. Let's call the next problem of guillotine cutting a cuboid (ad, be, cf) into

cuboids (a, b, c), (d, e, f) elementary cutting.

It is easy to see, that a cuboid (ad, be, cf) can be cut either into def cuboids (a, b, c) or abc

cuboids (d, e, f), i. e.,

(def, 0) ∈ ad, be, cf

a, b, c, d, e, f
, (0, abc) ∈ ad, be, cf

a, b, c, d, e, f
.

It is easy to see also, that points (def, 0), (0, abc) are vertices of the convex hull of the set
ad, be, cf

a, b, c, d, e, f
.

Lemma 2. The convex hull of the set of feasible solutions of elementary cutting is a right

triangle T (def, abc) with vertices in points (0, 0), (def, 0), (0, abc).

Proof. The proof follows from elementary volume estimations. Belongings

(def, 0) ∈ ad, be, cf

a, b, c, d, e, f
, (0, abc) ∈ ad, be, cf

a, b, c, d, e, f

are obvious. Let some point of an integer lattice (M,N), outside T (def, abc), belongs to
ad, be, cf

a, b, c, d, e, f
. The equation of the straight line, connecting points (def, 0), (0, abc), is

abcx+ defy = abcdef.

But then

abcM + defN > abcdef. (35)

The left part of (35) is a volume of all small cuboids, and the right part is a volume of the

big cuboid. Thus, (35) is impossible and (M,N) ∈ T (def, abc). The lemma is proved.

It appears, that every cutting a cuboid into two cuboids is decomposed into elementary

cuttings. We shall issue this statement as the theorem.

Theorem 3. Let a knapsack polygon

Psd = co{(x, y) ∈ Z2
+|ax+ dy 6 sd},

be presented by the set of right triangles T1(x1, y1), T2(x2, y2), ..., Tk(xk, yk):
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Psd =
k⊕

i=1

Ti(xi, yi).

Then

sd,B,C

a, b, c, d, e, f
=

k⊕
i=1

yid,B,C

a, b, c, d, e, f

Proof. If sd < a, then a knapsack polygon has vertices (0, s), (0, 0) and Psd = T (0, s),

where T (0, s) is a singular triangle with vertices (0, s), (0, 0). It is easy to see, that in this case

the cuboid (sd,B,C) can be cut only into sbB/ecbC/fc cuboids (d, e, f) and in this case the

theorem is trivial.

Let sd > a. Consider the set of feasible solutions of a 2-dimensional knapsack problem:

Ssd = {(x, y) ∈ Z2
+|ax+ dy 6 sd}.

By de�nition, Psd = co(Ssd). Points (0, s), (x1, s − y1) are neighboring vertices of Psd,

therefore Psd locates below the straight line connecting these points. The equation of this

line is y1x + x1y = sx1. Then Ssd also lays on one side from this line. On the other hand, this

line in Z2
+ lays below the line ax+ dy = sd. Therefore, we have another equivalent description

of the set Ssd:

Ssd = {(x, y) ∈ Z2
+|y1x+ x1y 6 sx1}.

By Theorem 1 we have equality

sd,B,C

a, b, c, d, e, f
=

sx1, B, C

y1, b, c, x1, e, f
.

Besides, we have equality sx1 = x1y1 + (s− y1)x1. Then, by Theorem 2

sx1, B, C

y1, b, c, x1, e, f
=

x1y1, B, C

y1, b, c, x1, e, f
⊕ (s− y1)x1, B, C

y1, b, c, x1, e, f
.

According to Theorem 1 we have

x1y1, B, C

y1, b, c, x1, e, f
=

y1d,B,C

a, b, c, d, e, f

(s− y1)x1, B, C
y1, b, c, x1, e, f

=
(s− y1)d,B,C
a, b, c, d, e, f

.

A knapsack polygon
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Psd−y1d = co{(x, y) ∈ Z2
+|ax+ dy 6 (s− y1)d},

can be presented by right triangles (x2, y2), ..., (xk, yk):

Psd−y1d =
k⊕

i=2

T (xi, yi).

That is, by induction we have the validity of the theorem. In addition, we have shown

sd,B,C

a, b, c, d, e, f
=

ykd,B,C

a, b, c, d, e, f
⊕

k−1⊕
i=1

xiyi, B, C

yi, b, c, xi, e, f

and if a triangle Tk is not singular, then

sd,B,C

a, b, c, d, e, f
=

k⊕
i=1

xiyi, B, C

yi, b, c, xi, e, f
.

As a matter of convenience, we can add the point Tk+1(0, 0) in the presentation of a polygon

Psd if Tk is not singular. So, we can assume, that Tk is singular, i. e., ykd < a and

sd,B,C

a, b, c, d, e, f
=

ykd,B,C

a, b, c, d, e, f
⊕

k−1⊕
i=1

xiyi, B, C

yi, b, c, xi, e, f
= (36)

=
k−1⊕
i=1

xiyi, B, C

yi, b, c, xi, e, f
⊕ T I(0, ykbB/ec · bC/fc),

where T I(0,M) designates the set of points of an integer lattice in a triangle T (0,M):

T I(0,M) = {(0, x)|x ∈ Z+, x 6M}.

A similar formula is valid for the side, multiple a. Note also, that such a formula can be

obtained by replacing a, d and (25). Let a knapsack polygon

Pra = co{(x, y) ∈ Z2
+|ax+ dy 6 ra},

be presented by the Minkowski sum

PA =
l⊕

i=1

Ti(xi, yi). (37)

of right triangles T1(x1, y1), T2(x2, y2)..., Tl(xl, yl) de�ned by the set of vertices

(X0, Y0), (X1, Y1), ..., (Xl, Yl), X0 < X1 < ... < Xl. Only T1 can be singular. If T1 is not

singular, then for convenience we can add in (37) as a summand the point T0(0, 0). So, we may

assume that T1 is singular. Then
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ra,B,C

a, b, c, d, e, f
=

x1a,B,C

a, b, c, d, e, f
⊕

l⊕
i=2

xiyi, B, C

yi, b, c, xi, e, f
= (38)

= T I(x1bB/bc · bC/cc, 0)⊕
l⊕

i=2

xiyi, B, C

yi, b, c, xi, e, f
,

where x1a < d. For the side A = ra + sd (take such (r, s) that it is a vertex of a knapsack

polygon for the side A ) by adding (36) and (38) we have the formula

A,B,C

a, b, c, d, e, f
=

x1a,B,C

a, b, c, d, e, f
⊕

K−1⊕
i=2

xiyi, B, C

yi, b, c, xi, e, f
⊕ yKd,B,C

a, b, c, d, e, f
=

T I(x1bB/bc · bC/cc, 0)⊕
K−1⊕
i=2

xiyi, B, C

yi, b, c, xi, e, f
⊕ T I(0, yKbB/dc · bC/fc),

where x1a < d, yKd < a,K = k+ l and a knapsack polygon for the side A = ra+sd is presented

by the formula PA =
⊕K

i=1 Ti(xi, yi).

If A can not be presented in the form A = ra+ sd, then we can diminish A to the maximal

A′, which can be presented in such a way A′ = ra + sd, without changing the set of feasible

solutions of a corresponding knapsack problem. Therefore, from the outset we can assume, that

A can be presented in the form A = ra+sd, where (r, s) is a vertex of a corresponding knapsack

polygon.

By considering a similar decomposition for the sides B = tb + ue, C = pc + qf we have

the formula for the set of feasible solutions
A,B,C

a, b, c, d, e, f
as the Minkowski sum of elementary

cutting patterns.

Thus, if vertices of a knapsack polygon are known for all three sides of a cuboid (A,B,C),

then the following formula for the set of feasible solutions is valid:

A,B,C

a, b, c, d, e, f
=

K−1⊕
i=2

L−1⊕
j=2

M−1⊕
k=2

xiyi, ujvj, wkzk
yi, vj, zk, xi, uj, wk

⊕
L−1⊕
j=1

T I(x1uj, 0) (39)

⊕
L⊕

j=2

T I(0, yKvj)⊕
K−1⊕
i=1

T I(xiu1, 0)⊕
K⊕
i=2

T I(0, yivL).

In rectangular cutting, the convex hull of the set of feasible solutions and more exactly,

the set of vertices of the convex hull has a great signi�cance. This set is used in nomenclature

problems of guillotine cutting in a mass production in which the economy is important not for

one sheet, but for a large number of sheets. In this connection, it is important to construct

both the set of feasible solutions, and the set of vertices of its convex hull.
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The great importance for mass production problems has a notion of the convex hull of the

set
A,B,C

a, b, c, d, e, f
. The general mass production problem of optimum cutting a large number

of cuboids (A,B,C) into small cuboids (a, b, c), (d, e, f) in the �xed proportion of both pieces

m : n can be formulated as Linear Programming problem

z → max

(zm, zn) ∈ co A,B,C

a, b, c, d, e, f

and geometrically solved by intersection of the line
x

y
=
m

n
with the boundary of co

A,B,C

a, b, c, d, e, f
,

i. e., by �nding two neighboring vertices of co
A,B,C

a, b, c, d, e, f
and the segment connecting them

such that it intersects the line
x

y
=

m

n
. These two neighboring vertices present two optimal

cutting patterns and the point of intersection presents the proportion of these cutting patterns

to satisfy the requirements in proportion of both pieces.

We are ready to formulate the main theorem of the paper.

Theorem 4. If vertices of a knapsack polygon are known for all three sides of a parallepiped

(A,B,C) so that

PA =
I⊕

i=1

Ti(xi, yi),

PB =
J⊕

j=1

Tj(uj, vj),

PC =
K⊕
k=1

Tk(wk, zk),

then the following formula for the convex hull of feasible solutions is valid:

co
A,B,C

a, b, c, d, e, f
=

I⊕
i=1

J⊕
j=1

K⊕
k=1

Tijk(xiujwk, yivjzk). (40)

Proof. The proof easily follows from (39), the next property of the convex hull: co(S1⊕S2) =

co(S1)⊕ co(S2) for compact sets and the fact that

co
xiyi, ujvj, wkzk

yi, vj, zk, xi, uj, wk

= T (xiujwk, yivjzk).
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From this formula and properties of convex polygons follows a polynomial algorithm for

constructing the convex hull
A,B,C

a, b, c, d, e, f
.

Algorithm Convex Hull

Step 1. Compute the sets of vertices of convex hulls of knapsack polygons for three sides

of a cuboid (A,B,C). Present these polygons by the Minkowski sum of right triangles

PA =
I⊕

i=1

Ti(xi, yi);PB =
J⊕

j=1

Tj(uj, vj);PC =
K⊕
k=1

Tk(wk, zk).

The polygon co
A,B,C

a, b, c, d, e, f
is equal to the Minkowski sum

I⊕
i=1

J⊕
j=1

K⊕
k=1

Tijk(xiujwk, yivjzk).

For constructing the set of its vertices go to the following step.

Step 2. Sort the set of right triangles Tijk(xiujwk, yivjzk) into monotonically increasing

order by angle at right vertex, i. e., by
yivjzk
xiujwk

. Let this sequence is {Ti(Xi, Yi}i=1,...,IJK).

Step 3. Compute the set of IJK + 1 points according to recurrence formula

(u0, v0) =

(
0,

⌊
A

d

⌋
·
⌊
B

e

⌋
·
⌊
C

f

⌋)

(ui, vi) = (ui−1 +Xi, vi−1 − Yi), i = 1, 2, ..., IJK.

Note, that not all these points are the vertices of co(
A,B,C

a, b, c, d, e, f
), but all its vertices belong

to this set and all these points are on the boundary of co
A,B,C

a, b, c, d, e, f
.

Step 4. Compute the convex hull of the set of points of Step 3 together with the origin of

coordinates. The obtained set is equal to co(
A,B,C

a, b, c, d, e, f
).

The complexity of algorithm is evaluated by the complexity of its steps. Step 1 has the

time complexity O(log a + log b + log c + log d + log e + log f) due to [8]. Step 2 has the time

complexity O(W logW ), where W = (log a + log d)(log b + log e)(log c + log f) because the

number of vertices of a knapsack polygon for the side A is estimated by O(min(log a, log d).

Steps 3, 4 have a cubic time complexity because in these steps algorithm works with the sets of

O(IJK) elements, where I + 1, J + 1, K + 1 are the numbers of vertices of knapsack polygons

for the sides A,B,C.

So, we achieve the next theorem.
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Theorem 5. For constructing the convex hull of the set of feasible solutions for guillotine

cutting a cuboid (A,B,C) into two cuboids (a, b, c), (d, e, f) there exists a polynomial algorithm

with the time complexity O(W logW ), where W = (log a+ log d)(log b+ log e)(log c+ log f).

In practice, there are di�erent criteria of cutting e�ciency. One of them is the criterion

of minimizing the unused volume. The criterion of maximizing the useful volume of a cutting

pattern is similar. There exists also the criterion of maximum of total amount of small cuboids

which can be cut from the given cuboid. At last, if some weights are assigned to small cuboids,

then we have the criterion of maximizing the weighed sum of small cuboids. It is easy to see,

that for all these criteria, because they are linear, the knowledge of the convex hull of the

set of feasible solutions allows to solve quickly corresponding optimization problems. For this

purpose, it is enough to compare values of a criterion on the set of vertices of the convex hull

of the set of feasible solutions.

Remark. As an exercise the reader can design an algorithm for optimizing the linear function

on the set co
A,B,C

a, b, c, d, e, f
with the time complexity O(U logU), where U = (log a+log d)(log b+

log e) + (log c+ log f). The idea of such an algorithm is based on exercise 2.3�7 from [8].

4. Numerical example. Consider an example of guillotine cutting a cuboid (41, 64, 41)

into small cuboids (3, 5, 7), (4, 7, 4). The sets of feasible solutions and knapsack polygons for

sides A,B,C are:

For the side A:

SA = {(x, y) ∈ Z2
+|3x+ 4y 6 41},

PA = co(SA) =
3⊕

i=1

Ti(xi, yj) = T1(3, 2)⊕ T2(8, 6)⊕ T3(2, 2),

For the side B:

SB = {(x, y) ∈ Z2
+|5x+ 7y 6 64},

PB = co(SB) =
3⊕

j=1

Tj(ui, vj) = T1(3, 2)⊕ T2(7, 5)⊕ T3(2, 2),

For the side C:

SC = {(x, y) ∈ Z2
+|7x+ 4y 6 41},
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PC = co(SB) =
3⊕

k=1

Tk(wk, zk) = T1(3, 5)⊕ T2(2, 4)⊕ T3(0, 1).

The convex hull of the set of feasible solutions
41, 64, 41

3, 5, 7, 4, 7, 4
according to Theorem 4 is equal

to

co
41, 64, 41

3, 5, 7, 4, 7, 4
=

3⊕
i=1

3⊕
j=1

3⊕
k=1

Tijk(xiujwk, yivjzk),

where the set of rectangular triangles {Tijk}, sorted by increasing
yijk
xijk

, is

(27, 20), (63, 50), (72, 60), (18, 16), (168, 150), (42, 40), (48, 48), (112, 120), (18, 20),

(18, 20), (42, 50), (48, 60), (12, 16), (12, 16), (28, 40), (32, 48), (12, 20), (8, 16), (0, 4), (0, 10),

(0, 12), (0, 30), (0, 4), (0, 4), (0, 10), (0, 12), (0, 4).

The set of points laying on a boundary of co
41, 64, 41

3, 5, 7, 4, 7, 4
, according to Step 3 of Algorithm,

is

(0, 900), (27, 880), (90, 830), (162, 770), (180, 754), (348, 604), (390, 564), (438, 516),

(550, 396), (568, 376), (586, 356), (628, 306), (676, 246), (688, 230), (700, 214), (728, 174),

(760, 126), (772, 106), (780, 90), (780, 86), (780, 76), (780, 64), (780, 34), (780, 30), (780, 26),

(780, 16), (780, 4), (780, 0).

Finally, 18 nonzero vertices of co
41, 64, 41

3, 5, 7, 4, 7, 4
are

(0, 900), (27, 880), (90, 830), (162, 770), (180, 754), (348, 604), (390, 564), (438, 516),

(550, 396), (586, 356), (628, 306), (676, 246), (700, 214), (728, 174), (760, 126), (772, 106),

(780, 90), (780, 0).

By the set of vertices of co
41, 64, 41

3, 5, 7, 4, 7, 4
it is easy to solve di�erent problems of optimizing

linear target functions. For maximizing useful volume,

105x+ 112y → max

(x, y) ∈ co 41, 64, 41

3, 5, 7, 4, 7, 4
,

the optimal solution is a vertex (348, 604) with a useful volume 104188 and a volume of the

rests 3396.

For a problem of maximizing the total number of small cuboids,

x+ y → max
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(x, y) ∈ co 41, 64, 41

3, 5, 7, 4, 7, 4
,

the optimal solution is given by two vertices (390, 564), (438, 516).

Finally, consider a mass production problem of guillotine cutting a large number of sheets

(41, 64, 41) into two pieces (3, 5, 7), (4, 7, 4) in proportion 1:1. The line x = y intersects the

segment connecting two vertices (438, 516), (550, 396) in the point (47519
29
, 47519

29
) and the

proportion of optimal cutting patterns corresponding with these two vertices is 77:39.

5. Generalization for n-dimensional guillotine cutting. The generalization of obtained

results for the case of guillotine cutting n-dimensional brick (A1, A2, ..., An) into two bricks

(a1, a2, ..., an), (b1, b2, ..., bn) can be easily obtained. We shall formulate the main theorems

without proving.

Theorem 6.

Let
A1, A2, ..., An

a1, a2, ..., an, b1, b2, ..., bn
designates the set of feasible solutions of a problem of guillotine

cutting n-dimensional brick (A1, A2, ..., An) into two bricks (a1, a2, ..., an), (b1, b2, ..., bn). Let

knapsack polygons for the sides A1, A2, ..., An are:

Pi =

mi⊕
j=1

T (xij, yij), i = 1, 2, ..., n.

Then

co
A1, A2, ..., An

a1, a2, ..., an, b1, b2, ..., bn
=

m1⊕
j1=1

m2⊕
j2=1

...
mn⊕
jn=1

T (
n∏

i=1

xiji ,
n∏

i=1

yiji).

From this theorem, for every �xed n a polynomial algorithm of constructing the convex hull

co
A1, A2, ..., An

a1, a2, ..., an, b1, b2, ..., bn
easily follows. Thus, the following theorem is valid.

Theorem 7. For every �xed n, a problem of constructing the convex hull of the set of

feasible solutions co
A1, A2, ..., An

a1, a2, ..., an, b1, b2, ..., bn
for the problem of guillotine cutting n-dimensional

brick (A1, A2, ..., An) into two bricks (a1, a2, ..., an), (b1, b2, ..., bn), is solvable by a polynomial

algorithm.

Conclusions. The generalization of a problem of cutting a rectangle into equal small

rectangles: cutting a cuboid sheet into two small cuboids is considered. The generalization

of the theorem in [4] allows to decompose the set of feasible solutions of this problem. For

constructing the convex hull of the set of feasible solutions a polynomial algorithm is designed.

The general theorem about the structure of the convex hull of the set of feasible solutions of

a problem of guillotine cutting an n-dimensional brick into two n-dimensional bricks and the

existence of a polynomial algorithm for its designing are formulated.

Open is a question whether the decision problem (m,n) ∈ A,B,C

a, b, c, d, e, f
belongs to P .
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