
THE EXISTENCE OF COMPUTABLE SEQUENCE THAT

CANNOT BE DESCRIBED BY FINITE AUTOMATA

R. Serikzhan, T. Bakibayev

Al-Farabi Kazakh National University,
480078, Almaty, Kazakhstan

ÓÄÊ 510.52

The goal of the project is to construct an in�nite sequence that cannot be generated by any

simple automatic device, and to estimate its complexity. The conjecture on the existence of such a

sequence is based on the idea of superiority of Turing machines over �nite automata. In the project,

a new notion of automaton martingale is introduced, and the existence of an in�nite binary random

sequence that cannot be generated by a �nite automaton is proved. In order to reach the goal of

the project one had to study Turing machines, �nite automata, computable martingales, and the

diagonalization method.

Key words: algorithmic complexity, computable martingales, �nite automata.

Introduction. The aim of this project is to construct an in�nite random sequence.
We introduce here a new notion of automaton martingale, construct a universal automaton

martingale, and an in�nite sequence is constructed against it. In order to do this we use the
classical diagonalization method.

1. Martingale and Automaton Martingale.

De�nition 1. [1] A martingale is a function d : {0, 1}∗ → [0,∞) such that d(λ) > 0, for
every x ∈ {0, 1}∗, the following equality (called fairness condition) holds.

d(x0) + d(x1)

2
= d(x).

d(λ) is called the norm of d. d is normed if d(λ) = 1. A martingale d succeeds on a set A if

lim
n>0

sup d(A � n) =∞.

S∞[d] denotes the class of sets on which the martingale d succeeds. A martingale d succeeds
on a class C if C ⊆ S∞[d].

De�nition 2. A (betting) strategy s is a function s : {0, 1}∗ → [0, 1]. The strategy sd
underlying the martingale d is the function

sd(x) =


d(x0)

2d(x)
if d(x) 6= 0

0 otherwise.
(1)

Conversely, for every strategy s and every real α > 0, the martingale d[s, α] of norm α
induced by s is de�ned by d(λ) = α and, for any string X � (n+ 1) where n > 0,

2 Òåîðåòè÷åñêàÿ èíôîðìàòèêà

d(X � (n+ 1)) =

{
2 · s(X � n) · d(X � n) if X(n) = 0
2 · (1− s(X � n)) · d(X � n) if X(n) = 1.

(2)

We de�ned a new notion of automaton martingale in this paper in order to de�ne sequences
that can be generated by a DFA. Since an automaton martingale is based on a DFA, i. e. it can
either accept or reject an expression, we have to consider the bets according to outcome. In case
if an automaton accepts the expression (input), the corresponding automaton martingale bets
0.75 (on zero). In case if an automaton rejects the expression, the corresponding automaton
martingale bets 0.25.

De�nition 3. An automaton martingale is a martingale with a strategy that can be
described by a deterministic �nite automaton.

2. Main Theorem.

Theorem 1. There exists a universal Turing machine that generates an in�nite sequence
X that cannot be generated by any automaton martingale.

In order to prove theorem 1 we need to prove the following 3 lemmas.
Lemma 1. There exists a universal Turing machine which enumerates all deterministic

�nite automata. Moreover, by given string of length n Turing machine checks whether it is a
coded automaton in linear time.

Proof. Let the following string be a code of an automaton:

0m10l1xfδ,

where m is the number of states, l is the code length of each state, x is a sequence of all coded
states (|x| = m ∗ l), f is a binary string of length m where the i-th bit equals 1 if and only if
the state number i is �nal, and δ = q〈0,0〉q〈1,0〉...q〈m,1〉 represents the following transition table
(|δ| = 2 ∗m ∗ l):

Table

Transition table

q0 q1 ... qm
0 q〈0,0〉 q〈1,0〉 ... q〈m,0〉
1 q〈0,1〉 q〈1,1〉 ... q〈m,1〉

for transitions of type qi, j → q〈i,j〉.
Without lost of generality we assume that the �rst state is the initial one, because any �nite

automaton with another initial state can be rewritten as an (isomorphic) automaton with the
�rst state as initial and that accepts the same language.

So, the total length of the code is n = m+1+l+1+m∗l+m+2∗m∗l = 3ml+2m+l+2. In
order to check whether a given string represents a coded automaton we have to do the following:

1) Check whether the string is of the form 0m10l1xfδ (in n steps).
2) Check whether the length of xfδ equals 3ml +m (in k ∗m ∗ l steps).
Checking whether δ contains only codes from x is not necessary because automata with

wrong states will be stopped during simulation once a wrong state is met.
Lemma 2. For any martingale d1 and automaton martingale d2 there exists one martingale

d1,2, that succeeds on all sequences on which any or both martingale and automaton martingale
succeed.

Proof. In order to create a new martingale d1,2 we emulate sd1 and sd2 from computable set
of all automaton martingales on some sequence X. An initial capital is divided into equal parts

Serikzhan R., Bakibayev T. 3

between both martingales such that each of them can apply its own strategy on the sequence.
Each of sd1 and sd2 bets according to its strategy (on zero), and the new martingale strategy
sd1,2 summarizes the bets and bets the total sum. Whether d1,2 wins or lose on current step,
it divides the obtained capital between d1 and d2 corresponding to their new capitals. Thus,
martingales can win or lose on a sequence independently from each other. We should note that
the new martingale d1,2 succeeds if at least one of the martingales d1 and d2 succeeds:

lim
n>0

sup d1,2(X � n) = lim
n>0

sup d1(X � n) + lim
n>0

sup d2(X � n).

Therefore, if one of the martingales succeeds then

lim
n>0

sup d1(X � n) =∞ or lim
n>0

sup d2(X � n) =∞.

It implies that
lim
n>0

sup d1,2(X � n) =∞.

Note, that the de�nition of the new martingale d1,2 is as follows:

d1,2(x) = d1(x) + d2(x),

and
d1,2(λ) = 2d1(λ).

Lemma 3. Given a �nite set of automaton martingales {d1, d2, ..., dn} there exists one
combined martingale d1,2,...,n that succeeds on all sequences on which any of these automaton
martingales succeeds.

Proof. Lemma is proved by induction. In the proof of lemma 2 we took some �xed d1 and d2
and combined them into one martingale. In the same way we can merge a set of other automaton
martingales into a combined martingale d1,2,...,n. For example, we combine martingale d1,2, which
is based on d1 and d2, with the martingale d3. As a result, if one of d1,2 and d3 wins, the new
martingale d1,2,3 based on them also wins. So, we will get the universal martingale d1,2,...,n that
succeeds on all sequences on which any automaton martingale succeeds. Thus, the de�nition of
the combined martingale d1,2,...,n is

d1,2,...,n(x) = d1(x) + d2(x) + d3(x) + ...+ dn(x)

De�nition 4. Let zs be a string number s in length-lexicographical ordering.
As the coding of �nite automata and combined martingales d1,2,...,n are de�ned we can now

turn to the construction of the desired set.
Proof (of theorem 1).
It is easy to see that we can simply take one general combined martingale for all automaton

martingales and diagonalize over it. But for complexity estimation reasons it is better to have
the exact procedure for building the set and hence the exact algorithm of sd1,2,... . We build the
set step by step as follows.

On step s of the construction we de�ne the value of X(zs). In order to do this, we do the
following (diagonalize against all automaton martingales up to zs):

1. Check which of the strings zs′ with s
′ 6 s are coded automata (by lemma 1).

4 Òåîðåòè÷åñêàÿ èíôîðìàòèêà

2. By lemma 3 combine all of the corresponding automaton martingales into one martingale
d1,2,...,k.

3. Run the emulation process of the corresponding strategy sd1,2,...,k on string
X(z0)X(z1)...X(zs−1).

4. In case if sd1,2,...,k(X(z0)X(z1)...X(zs−1)) > 0.5 (it bets more on zero) let X(zs) = 1,
otherwise let X(zs) = 0.

Thus we guarantee that limn>0 sup d1,2,...,k(X � n) 6= ∞ for all k > 0 and that
limn>0 sup di(X � n) 6= ∞ for any i > 0. Therefore, no automaton martingale succeeds on
the constructed set (on the characteristic sequence of the set).

3. Estimation of complexity.

Lemma 4. Given X � zs, all strings z′s < zs that represent �nite automata,and di(zs−1) for
each such automaton (0 6 i 6 s) it takes k · s steps to compute X(zs).

Proof. By the proof of theorem 1 we have to emulate each �nite automaton z′s such that
s′ 6 s on string X � zs−1. Since we are given all strings z′s 6 zs that represent �nite automata
it su�ces to check if zs is a �nite automaton. And by lemma 1 it takes linear time, i. e., less
than k · log s steps.

In order to construct sequence X, that contains some strings (for instance, z1 = 0, z2 = 1,
z3 = 00 and so on) we need to start from λ and check whether it represents an automaton. As
λ is not a coded automaton(by lemma 1) we add 0 to X, and we do the same with other strings
until we �nd an automaton. As soon as we meet one we need to emulate that automaton on
already constructed X in order to �nd the next member of X. We do the same actions until
another automaton is met. In this case we give them the capital equal 1 and emulate each of
them onX � zs in order to �ndX(zs). So, each automaton

”
bets“ according to its corresponding

automaton martingale's strategy, and we sum up these bets.

Note that we emulate an automaton on X by emulating its �rst de�ned symbol, then the
�rst two symbols and so on in order to let capital of an automaton rise or fall, and we always give
automata initial capital 1 irrespectively of the number of automata. So, we do the following: 1)
if there are no automata we letX(zs) = 0; 2) emulate the last step of each of these automata one
by one; 3) sum up the bet; 4) if we bet more on 0 then let X(zs) = 1 otherwise let X(zs) = 0.

Now we have to check how many strings s′ 6 s represent coded �nite automata. Since the
code of an automaton is 0m10l1xfδ, it is easy to see that there are not more than 2|zs|−2−m−l

or 2|xfδ| automata. Hence, there exists some k, such that for the �rst, third and fourth steps

of the above procedure it takes k steps, and for the second step � k · s
4
steps. Without lost of

generality we can assume that it takes k · s steps to complete the whole procedure.

In order to simplify the explanation let a be the capital of the �rst automaton and b be
the capital of the other. Let s(dA1) = 0.7 and s(dA2) = 0.25 then the total bet is s(dA1,2) =
0.7a+ 0.25b

a+ b
. Thus, we combine two automata into one on a �xed segment of X, and the same

way we combine all the following automata step by step. If s(dA1,2) > 0.5 we let X(zs) = 1 for
the diagonalization, otherwise we let X(zs) = 0.

Theorem 2. Given zs it takes 2
2|zs| steps to compute X(zs).

Proof. By lemma 4 given X � zs and all strings s′ < s that represent �nite automata, it
takes k · s steps to compute X(zs). So, by induction it takes s · k · s steps to compute X(zs).
Since s 6 2|zs|, the total number of steps is less than 2|zs| · 2|zs| · k 6 k · 22|zs| 6 0(22|zs|).

Serikzhan R., Bakibayev T. 5

References

1. Rodney G. Downey, Denis R. Hirschfeldt. Algorithmic Randomness and Complexity, Theory

and Applications of Computability, New York: Springer, 2010.

Raushan Serikzhan �

SU Manager al-Farabi Kazakh National University;

e-mail: r.serikzhan@gmail.com

Timur Bakibayev �

Ph.D. al-Farabi Kazakh National University;

e-mail: timurbakibayev@gmail.com

Äàòà ïîñòóïëåíèÿ � 11.11.2014

